United States Patent

US009367344B2

(12) 10) Patent No.: US 9,367,344 B2
Udupi et al. (45) Date of Patent: Jun. 14, 2016
(54) OPTIMIZED ASSIGNMENTS AND/OR 7,234,139 B1* 6/2007 Feinberg ............. GO6F 9/45504
GENERATION VIRTUAL MACHINE FOR 718/1
REDUCER TASKS 7,962,915 B2* 6/2011 Eshel ................. GO6F 11/721(2‘2/2
. 8,276,145 B2* 9/2012 Papaefstathiou ........ GOGF 9/485
(71) Applicant: CISCO TECHNOLOGY, INC., San 718/102
Jose, CA (US) 8,276,148 B2* 9/2012 Cho ....ccceovvvvvveene GOG6F 9/4881
705/7.26
(72) Inventors: Yathiraj B. Udupi, San Jose, CA (US); 8,375,386 B2* 22013 Hendel ............... GOGF 9/45533
Debojyoti Dutta, Santa Clara, CA (US); 437
ebojyotl Lutla, anta %-ara, ; 8,381,015 B2*  2/2013 Kaminski ............ GOGF 9/5066
Madhav V. Marathe, Cupertino, CA 714/4.1
(US); Raghunath O. Nambiar, San 8,484,653 B2*  7/2013 Tsirkin .....cc..c..... GOG6F 9/45533
Ramon, CA (US) 8,544,004 B2* 9/2013 Fulthei GO6F ;?495/252
s A ultheim ............
H . 718/1
(73) ASSlgnee' CISCO TECHNOLOGY’ INC" San 8,645,966 Bz 3k 2/20 14 Andrade ................ G06F 9/50
Jose, CA (US) 718/104
8,806,486 B2* 82014 Martin ................ GOGF 9/45533
(*) Notice: Subject to any disclaimer, the term of this 709/231
patent is extended or adjusted under 35 8,909,785 B2  12/2014 Franco et al.
U.S.C. 154(b) by 0 days. 8,954,967 B2* 22015 Balmin ... G06F7%5/(1)88
(21) Appl. No.: 14/509,691 (Continued)
OTHER PUBLICATIONS
(22) Filed: Oct. 8, 2014 . ) ) )
Hwang et al, “Minimizing Cost of Virtual Machines for Deadline-
(65) Prior Publication Data Constrained MapReduce Applications in the Cloud”, IEEE, pp. 130-
138,2012.*
US 2016/0103695 Al Apr. 14, 2016 (Continued)
(51) Int.ClL Primary Examiner — Anil Khatri
GO6F 9/455 (2006.01) (74) Attorney, Agent, or Firm — Patent Capital Group
(52) US.CL (57) ABSTRACT
CPC .. GO6F 9/45558 (2013.01); GOGF 2009/45562 : : .
2013.01 The present disclosure relates to assignment or generation of
. . . ( 01 reducer virtual machines after the “map” phase is substan-
(58) Field of Classification Search tially complete in MapReduce. Instead of a priori placement,
CPC GO6F 9/45558; GOG6F 9/45575; GO6F 9/4806 distribution of keys after the “map” phase over the mapper
USPC i 718/1, 100-107 virtual machines can be used to efficiently reducer tasks in
See application file for complete search history. virtualized cloud infrastructure like OpenStack. By solving a
constraint optimization problem, reducer VMs can be opti-
(56) References Cited mally assigned to process keys subject to certain constraints.
In particular, the present disclosure describes a special vari-
U.S. PATENT DOCUMENTS able matrix. Furthermore, the present disclosure describes
several possible cost matrices for representing the costs deter-
5,519,867 A *  5/1996 Moeller ............... GO6F 9/4428  mined based on the key distribution over the mapper VMs
6,298,370 BL* 10/2001 Tang G06F7é95%22 (and other suitable factors).
T 718/100 20 Claims, 4 Drawing Sheets

MAP

MAP ...

MAP
VM_M

“M” MAPPER VMS

KEY K_X

3 W1l [——> | vM_1
- REDUCE
MAP VM_2
< M_2

REDUCE

REDUCE

REDUCE

KEY K_Y
VM_N

“N” KEYS => “N” REDUCER VMS (ASSUMPTION
OF 1 REDUCER VM PER KEY)



US 9,367,344 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,959,651 B2* 2/2015 Li .ocvivviiiiiinnn GO6F 21/60
726/26

8,972,986 B2* 3/2015 Palanisamy ........... GOG6F 9/5066
718/1

8,997,107 B2* 3/2015 Jain ....cccooviiiinnn GO6F 9/46
709/223

2011/0219372 Al
2012/0131139 Al
2012/0167101 Al
2013/0031559 Al
2013/0219068 Al
2013/0268672 Al
2013/0290953 Al
2013/0339965 Al
2014/0115168 Al
2014/0143401 Al
2014/0310712 Al

9/2011 Agrawal et al.
5/2012 Siripurapu et al.
6/2012 Kandula et al.
1/2013 Alicherry
8/2013 Ballani et al.
10/2013 Justafort
10/2013 Lietal
12/2013 Meng et al.
4/2014 Yamashima et al.
5/2014 Carlen
10/2014 Meng et al.
2014/0380307 Al  12/2014 Zhuetal.
2015/0127834 Al 5/2015 Udupi et al.

OTHER PUBLICATIONS

Huang et al, “A Virtual Machine Consolidation Framework for
MapReduce Enabled Computing Clouds”, ACM, pp. 1-8, 2012.*
Arnold et al, “Improving Virtual Machine Performance Using a
CrossRun Profile Repository”, ACM, pp. 297-311, 2005.*
Nakajima et al, “Optimizing Virtual Machines Using Hybrid
Virtualization” ACM, pp. 573-578, 2011.*

Arnold et al, “Active Covariance Matrix Adaptation for the (1+1)-
CMA-ES”, ACM, pp. 385-392, 2010.*

Hsieh et al, “Fast Coordinate Descent Methods with Variable Selec-
tion for Non-negative Matrix Factorization”, ACM, pp. 1064-1072,
2011.*

USPTO Nov. 23, 2015 Non-Final Office Action from U.S. Appl. No.
14/242,131.

OpenStack Configuration Reference, May 10, 2015 docs.openstack.
org; 665 pages.

“Using DRS Affinity Rules,” VMware vSphere 5.1 Documentation
Center; First published on or about Sep. 15, 2012; 8 pages https://
pubs.vmware.com/vsphere-5 1/index jsp#com.vmware.vsphere.
resmgmt.doc/GUID-FF28F29C-8B67-4EFF-A2EF-
63B3537E6934 html.

PCT Jan. 13, 2016 International Search Report and Written Opinion
from PCT/US2015/054035.

U.S. Appl. No. 14/726,336, filed May 29, 2015, entitled “Optimized
Hadoop Task Scheduler in an Optimally Placed Virtualized Hadoop
Cluster Using Network Cost Optimizations,” Inventor(s): Yathiraj B.
Udupi.

U.S. Appl. No. 14/731,166, filed Jun. 4, 2015, entitled “Virtual
Machine Placement Optimization With Generalized Organization
Scenarios,” Inventor(s): Yathiraj B. Udupi.

“Optimization with PuLP” Optimization with PuLP—PuL.P v1.4.6
documentation, first published on or about Dec. 26, 2010; 1 page.
Fang, Weiwei, et al., “VMPlanner: Optimizing virtual machine
placement and traffic flow routing to reduce network power costs in
cloud data centers,” Computer Networks, vol. 57, Issue 1, Jan. 16,
2013, pp. 179-196.

Gibizer,Balasz, “API: Add soft-affinity policy for server-group,”
OpenStack Compute (Nova); Blueprints, Apr. 30, 2014, 2 pages
https://blueprints.launchpad.net/nova/+spec/soft-affinity-for-server-
group.

Gu, Rong, et al., “SHadoop: Improving MapReduce performance by
optimizing job execution mechanism in Hadoop clusters,” Journal of
Parallel and Distributed Computing vol. 74, Issue 3, Mar. 2014, pp.
2166-2179.

Herodotou, Herodotos, et al., “Profiling, What if Analysis, and Cost
based Optimization of MapReduce Programs,” The 37th Interna-
tional Conference on Very Large Data Bases, Aug. 29, Sep. 3, 2011,
Seattle, Washington; 12 pages.

Jiang, Joe Wenyjie, et al., “Joint VM Placement and Routing for Data
Center Traffic Engineering,” INFOCOM 2012, Mar. 25-30, 2012,
Orlando, FL; 9 pages.

Kambatla, Karthik, et al., “Towards Optimizing Hadoop Provision-
ing in the Cloud,” HotCloud’09 [2009 conference on Hot topics in
cloud computing], Jun. 14-19, 2009, S pages.

Kondikoppa, Praveenkumar, et al., “Network-Aware Scheduling of
MapReduce Framework on Distributed Clusters over High Speed
Networks,” Workshop on Cloud Services, Federation, and the 8th
Open Cirrus Summit, Sep. 21, 2012, San Jose, CA, USA; 6 pages.
Korupolu, Madhukar, et al., “Coupled Placement in Modern Data
Centers,” IPDPS 09 Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, May 23, 2009, pp.
1-12.

Li, Xin, et al., “Let’s Stay Together: Towards Traffic Aware Virtual
Machine Placement in Data Centers,” INFOCOMM 2014, Las Vegas,
NV, Jun. 14-24, 2014; 9 pages.

Lindgren, Hans, “Performance Management for Cloud Services:
Implementation and Evolution of Schedulers for OpenStack,” Com-
munication Networks School of Electrical Engineering, Master’s
Degree Project, Jul. 2013, 50 pages.

Liu, Shengyuan, et al., “Evaluating Task Scheduling in Hadoop-
based Cloud Systems,” 2013 IEEE International Conference on Big
Data, Oct. 6-9, 2013, Santa Clara, CA; 6 pages.

Meng, Xiaoqiao, et al., “Improving the Scalability of Data Center
Networks with Traffic-aware Virtual Machine Placement,” Israel
Institute of Technology, 236635—On the Management and Effi-
ciency of Cloud Based Services, Dec. 8, 2010, 39 pages.

Meng, Xiaoqiao, et al., “Improving the Scalability of Data Center
Networks with Traffic-aware Virtual Machine Placement,” IEEE
INFOCOM 2010, Mar. 14-19, 2010, 9 pages.

Pachorkar, Nilesh, et al., “Multi-dimensional Affinity Aware VM
Placement Algorithm in Cloud Computing,” International Journal of
Advanced Computer Research, vol. 3 No. 4 Issue-13, Dec. 2013; 5
pages.

Bonde, Dhaval, “Techniques for Virtual Machine Placement in
Clouds, MTP Stage 1 Report,” Submitted in partial fulllment of the
requirements for the degree of Master of Technology, Department of
Computer Science and Engineering Indian Institute of Technology,
Bombay Mumbai 2010; 18 pages.

Qin, Peng, et al., “Bandwidth-Aware Scheduling with SDN in
Hadoop: A New Trend for Big Data,” Mar. 12, 2014; Cornell Uni-
versity Library; arXiv:1403.2800v1 [c¢s.DC]; submitted on Mar. 12,
2014; 8 pages.

Sandholm, Thomas, et al., “MapReduce Optimization Using Regu-
lated Dynamic Prioritization,” SIGMETRICS/Performance’09, Jun.
15-19, 2009, Seattle, WA, USA.

Sonnek, Jason, et al., “TR 09-030 Technical Report—Starling: Mini-
mizing Communication Overhead in Virtualized Computing Plat-
forms Using Decentralized Affinity-Aware Migration,” Department
of Computer Science and Engineering, University of Minnesota,
Dec. 2, 2009.

Tang, Xia, et al., “A Reduce Task Scheduler for MapReduce with
Minimum Transmission Cost Based on Sampling Evaluation,” Inter-
national Journal of Database Theory and Application vol. 8, No. 1
(2015), pp. 1-10; Feb. 2015 http://dx.doi.org/10.14257/ijdta.2015.8.
1.0.

Yan, Cairong, “Affinity-aware Virtual Cluster Optimization for
MapReduce Applications,” 2012 IEEE International Conference on
Cluster Computing (CLUSTER), Sep. 24-28, 2012; 9 pages.

* cited by examiner



U.S. Patent Jun. 14,2016 Sheet 1 of 4 US 9,367,344 B2

KEY K_X
MAP REDUCE
VM_1 > VM_1
REDUCE
MAP VM _2
VM_2
DATA REDUCE
MAP ...
KEY K VY REDUCE
- VM_N
MAP
VM_M

“M” MAPPER VMS
“N” KEYS => “N” REDUCER VMS (ASSUMPTION
OF 1 REDUCER VM PER KEY)

FIGURE 1



U.S. Patent

Jun. 14, 2016

Sheet 2 of 4

US 9,367,344 B2

DETERMINE KEY DISTRIBUTIONS 202

DETERMINE COSTS 204

SOLVE BASED ON KEY DISTRIBUTIONS AND

CONSTRAINTS 206

FIGURE 2

Key1

| Key2 | Key3

|Mapper 1

| 10000

| 15 %0

[Mapper 2

100000

| 1000 || 5000

Mapper 3| 20 |50000{50000|

FIGURE 3



U.S. Patent Jun. 14,2016 Sheet 3 of 4 US 9,367,344 B2

FIGURE 4

RiEEImrnse [ dvalvalo i vig

I ERU BRI R R VIR B e L i HiLl
vzioxiomiinaidom VREC R B fLL e 3 LLIC Pm

i ¥ { { ;

i

|

...................

¥itopipRi.ingi.domi vipenfoniog

VoD mti0 mai {0 mil g Vo et o maf L e mill

.............

FIGURE 5 FIGURE 6




U.S. Patent Jun. 14,2016 Sheet 4 of 4 US 9,367,344 B2

700
\

PARTITIONING SYSTEM 702

PROCESSOR
204 MEMORY 706
COSTS .| CONSTRAINTS .| SCHEDULERS
MODULE 708 | SOLVER 710 i 712

N

RULES /
POLICIES 714

FIGURE 7



US 9,367,344 B2

1
OPTIMIZED ASSIGNMENTS AND/OR
GENERATION VIRTUAL MACHINE FOR
REDUCER TASKS

TECHNICAL FIELD

This disclosure relates in general to the field of computing
and, more particularly, to systems and methods for providing
optimized virtual machine assignments to reducer tasks.

BACKGROUND

Computer networking technology allows execution of
complicated computing tasks by sharing the work among the
various hardware resources within the network. This resource
sharing facilitates computing tasks that were previously too
burdensome or impracticable to complete. For example, the
term “big data” has been used to describe data sets that are
extremely large and complex, making them difficult to pro-
cess. Many implementations of computing and networking
technologies have been devised to process big data. One
commonly used operation for operating on these large
datasets is MapReduce. In one example, MapReduce used
with Hadoop (framework for distributed computing) can
allow writing of applications which process vast amounts of
data (multi-terabyte data-sets) in-parallel on large clusters
(thousands of nodes) of commodity hardware in a reliable,
fault tolerant manner. When working in a virtualized environ-
ment (e.g., OpenStack Cloud Infrastructures), MapReduce
can be implemented using many virtual machines distributed
on physical hosts. Processing these large datasets is compu-
tationally intensive, and taking up resources in a data center
can be costly.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 illustrates the process for MapReduce having map
tasks and reducer tasks being performed in a virtualized com-
puting environment, according to some embodiments of the
disclosure;

FIG. 2 shows an exemplary flow diagram illustrating a
method for determining virtual machine assignment for
reducer tasks on physical hosts, according to some embodi-
ments of the disclosure;

FIG. 3 illustrates a distribution of keys over mapper virtual
machines after map tasks are complete, according to some
embodiments of the disclosure;

FIG. 4 shows an exemplary variable matrix X, according to
some embodiments of the disclosure;

FIG. 5 shows a key distribution matrix D, according to
some embodiments of the disclosure;

FIG. 6 shows a network distance matrix C, according to
some embodiments of the disclosure; and

FIG. 7 shows an exemplary system for determining virtual
machine assignment for reducer tasks on physical hosts,
according to some embodiments of the disclosure.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

The present disclosure relates to assignment or generation
of reducer virtual machines (VMs) after the “map” phase is

10

15

20

25

30

35

40

45

50

55

60

65

2

substantially complete in MapReduce. Instead of a priori
placement, distribution of keys after the “map” phase over the
mapper virtual machines can be used to efficiently place
reducer tasks to virtual machines in virtualized cloud infra-
structure like OpenStack. By solving a constraint optimiza-
tion problem, reducer VMs can be optimally assigned to
process keys subject to certain constraints. In particular, the
present disclosure describes a special variable matrix. Fur-
thermore, the present disclosure describes several possible
cost matrices for representing the costs determined based on
the key distribution over the mapper VMs (and other suitable
factors).

In some embodiments, a method for determining virtual
machine assignments for reducer tasks on physical hosts
(sometimes referred to as a “partitioning method”) can
include determining a distribution of keys over mapper vir-
tual machines after map tasks are complete, determining costs
associated with possible assignments of virtual machines to
reducer tasks on the keys based on the distribution of keys;
and solving for assignments of virtual machines to the
reducer tasks based on the costs and subject to one or more
constraints. In other words, the assignment of virtual
machines to reducer tasks can be formulated as a constraints
optimization problem, where one or more optimal or desir-
able solutions may exist. From the solution(s), a solution can
be selected which may provide the optimal assignment of
virtual machines to reducer tasks, or at least an assignment
that is better than other possible assignments. Furthermore,
the costs associated with possible assignments of virtual
machines to reducer tasks comprises, for each possible virtual
machine and for each reducer task, a cost for the particular
possible virtual machine to perform the particular reducer
task. These costs can in some cases be computed based on the
distribution of keys.

Advantageously, the resulting optimized assignment of
VMs to reducer tasks can utilize resources in the data center
more efficiently, and in some cases, allow MapReduce to be
completed faster than a priori placements of reducer VMs. In
particular, the distribution of keys provide some guidance for
the optimization, such that certain costs in the data center for
a given set of assignments of reducer VMs can be determined
and minimized. Generally speaking, the distribution of keys
over the mapper virtual machines comprises, for each key and
for each mapper virtual machine, a number of key-value pairs
for the particular key stored with the particular mapper virtual
machine.

In some embodiments, the method can not only determine
assignments of mapper virtual machines (VMs used as map-
pers in the “map” phase) to reducer tasks, the method can also
determine assignments of virtual machines to be created on
available physical hosts to reducer tasks. In particular, the
partitioning method determines optimized assignments from
possible assignments (i.e., solves for substantially optimized
assignments of virtual machines) by using a specialized vari-
able matrix defining the possible assignments. Specifically,
the variable matrix can have dimensions of at least n by
(M+p*q), where n is the number of keys, M is the number of
mapper virtual machines, p is n-M, and q is the number of
available physical hosts on which a virtual machine can be
created.

Broadly speaking, the partitioning method assesses the
costs for various possible assignments of reducer VMs to
reducer tasks by computing, for each virtual machine and for
each reducer task, a cost for performing the particular reducer
task for a particular key using a particular virtual machine
based on the distribution of keys over the mapper virtual
machines. In some embodiments, other factors are used for



US 9,367,344 B2

3

computing the cost. These factors can include one or more of
the following: network distance(s) from the virtual
machine(s) on which the key-value pairs for the particular key
is stored to the particular virtual machine performing the
reducer task for the particular key, processor utilization of the
particular virtual machine performing the reducer task for the
particular key, memory utilization of the particular virtual
machine performing the reducer task for the particular key,
bandwidth availability(-ies) of the communication path from
the virtual machine(s) on which the key-value pairs for the
particular key is stored to the particular virtual machine per-
forming the reducer task for the particular key, and disk
input/output speeds of the particular virtual machine per-
forming the reducer task for the particular key.

To limit the possible assignments, the partitioning method
is configured with one or more constraints. These constraints
can advantageously implement certain rules and policies on
the possible assignments, as well as ensuring the solution to
the optimization problem is a correct one. In one example, the
one or more constraints includes the following: (1) a virtual
machine is assigned to at most one reducer task, (2) a reducer
task for a particular key is assigned to only one virtual
machine, and (3) if a reducer task is assigned to a virtual
machine to be created on a physical host, the virtual machine
is created on only one physical host. In another example
where the constraints are relaxed (e.g., if a virtual machine is
capable of performing up to a predefined number of reducer
task(s)), the one or more constraints can include the follow-
ing: (1) a reducer task for a particular key is assigned to only
one virtual machine, and (2) if a reducer task is assigned to a
virtual machine to be created on a physical host, the virtual
machine is created on only one physical host.

EXAMPLE EMBODIMENTS

Understanding Basics of MapReduce in a Virtualized
Environment

A MapReduce job (e.g., as a Hadoop workload) usually
splits the input data-set into independent chunks to be pro-
cessed in parallel manner. The job has two main phases of
work—"“map” and “reduce”—hence MapReduce. In the
“map” phase, the given problem is divided into smaller sub-
problems, each mapper then works on the subset of data
providing an output with a set of (key, value) pairs (or referred
herein as key-value pairs). In the “reduce” phase, the output
from the mappers is handled by a set of reducers, where each
reducer summarizes the data based on the provided keys.
When MapReduce is implemented in a virtualized environ-
ment, e.g., using OpenStack cloud infrastructure, the map-
pers and reducers are provisioned as virtual machines
(“VMs” or sometimes referred to as virtual compute nodes)
on physical hosts.

FIG. 1 illustrates the process for MapReduce having map
tasks and reducer tasks being performed in a virtualized com-
puting environment, according to some embodiments of the
disclosure. First, data is provided to M mapper VMs (shown
as MAP VM_1, MAPVM_2, ... MAP VM_M) to perform
the respective mapper tasks. During the MapReduce job, all
the map tasks may be completed before reducer tasks start.
Once the mapper tasks are complete, output from the mapper
VMs can have N keys. For reduce, key-value pairs with the
same key ought to end up at (or be placed at/assigned to) the
same reducer VM. This is called partitioning. In one example,
it is assumed one reducer VM performs reducer task for one
key. The example would have N reducer VMs (shown as
REDUCE VM_1, REDUCE VM_2, ... REDUCE VM_N).

15

35

40

45

50

55

4

A MapReduce system usually provides a default partition-
ing function, e.g., hash(key) mod R to select a reducer VM for
a particular key. However, due to the effects of lopsided key
distributions, multi-tenancy, network congestion, etc., such a
simple partition function can cause some of the reducer VMs
to take excessively long time, thus delaying the overall
completion of the job. For at least that reason, the placement
VMs in a physical topology of hosts/servers and their assign-
ments to reducer tasks can play an important role in deciding
the performance of such workloads.

Improved Partitioning Method

The present disclosure describes an improved partitioning
method which can determine virtual machine assignments for
reducer tasks on physical hosts to enable faster as well as
balanced completion of all the reducer tasks. In some embodi-
ments, the improved partitioning method can address how to
make optimized placements of the reducer VMs in a virtual-
ized Hadoop environment on cloud infrastructures such as
OpenStack. The improved partitioning method can perform
technical tasks such as improve load balancing among the
reducer VMs (and the hosts on which the reducer VMs are
provided), determine whether to create new reducer VMs and
how many, which host to place the new reducer VMs, etc.

FIG. 2 shows an exemplary flow diagram illustrating an
improved partitioning method for determining virtual
machine assignments for reducer tasks on physical hosts,
according to some embodiments of the disclosure. Once the
map tasks are complete, the partitioning method determines a
distribution of keys over mapper virtual machines (box 202).
Based on the distribution of keys, the partitioning method
determines costs associated with possible assignments of vir-
tual machines to reducer tasks on the keys (box 204). Based
on the costs, the partitioning method solves for substantially
optimized assignments of virtual machines to the reducer
tasks subject to one or more constraints (box 206).

The flow diagram illustrates that the improved partitioning
method solves a constraints optimization problem to deter-
mine optimal assignments of VMs to reducer tasks. This can
be done by minimizing cost based on the distribution ofkeys
in view of one or more constraint(s). It is envisioned by the
disclosure that an equivalent implementation may solve the
problem by maximizing another metric (as opposed to mini-
mizing cost).

Distribution of Keys after Map Tasks are Done and Exem-
plary Assignments of Reducer VM Based on the Distribution
of Keys

One interesting feature of the improved partitioning
method is that the method uses the distribution of keys as part
of the cost function of the constraints optimization problem
when optimizing the assignment of reducer VMs. The distri-
bution of keys is an important factor in partitioning because
the transfer and processing of these keys in a virtualized cloud
infrastructure can take up a lot of network and computing
resources. The network and computing resources needed for
performing a reducer task is directly related to the cost for a
particular reducer VM to perform the reducer task. The dis-
tribution of keys over the mapper virtual machines would
generally include, for each key and for each mapper VM, a
number of key-value pairs for the particular key stored with
the particular mapper VM (on the physical host of the VM).
The distribution of keys provide information relating to
where the keys are stored, such that costs for transferring
and/or processing these keys on certain reducer VMs can be
determined.

FIG. 3 illustrates a distribution of keys over mapper VMs
after map tasks are complete, according to some embodi-
ments of the disclosure. In this example, the table or matrix



US 9,367,344 B2

5

has the mapper VMs (Mapper 1, Mapper 2, Mapper 3) rep-
resented as rows. The columns show the counts/numbers of
how many key-value pairs having a particular key are stored
with a particular mapper VM. In this example, Keyl has
10000 key-value pairs with Mapper 1, 100000 key-value
pairs with Mapper 2, and 20 key-value pairs with mapper 3. It
is envisioned that other kinds of numbers can be used to
represent distribution of keys (e.g., percentages, fractions,
scores, sizes, etc.)

Considering the example of distribution of keys shown in
FIG. 3, possible assignments of reducer VMs to reduce these
keys are:

Assign the same VM that was used as Mapper 2 as the
reducer VM for Key1 (because many key-value pairs of
Keyl1 is already with Mapper 2),

Assign the same VM that was used as Mapper 3 as the
reducer VM for Key?2 (because many key-value pairs of
Key 2 is already with Mapper 3), and

Assign the same VM that was used as Mapper 1 as the
reducer VM for Key3 (because the VM used as Mapper
1 is not busy).

The above exemplary assignments can ensure that the
amount of data that has to be moved from the mappers to
reducers is minimized or reduced. In this example, these
assignments can be determined based on which VM had the
most key-value pairs for a particular key, which can directly
relate to the cost of moving the data from mappers to reducers.

Note it can be seen in the above example related to FIG. 3
that the reducer for Key3 could have been run on the same VM
used as Mapper 3 since that VM used as Mapper 3 also has a
large number of Key3 key-value pairs. So solution to the
optimization can vary depending on how the cost is defined.

Defining the Constraint Optimization Problem: A Basic
Setup

In order to efficiently manage the sharing of these complex
computing tasks, available computing and network resources
should be intelligently allocated. To find optimal placement,
the method solves a constraints optimization problem by
minimizing costs to find the optimal solution subject to
resource constraints. Specifically, the costs can be determined
based on at least the distribution of keys over the mapper
VMs. This optimal solution, once found, can be used by the
compute VM schedulers such as OpenStack compute sched-
uler while deciding which physical host to use to either spin
up a VM or to reuse an existing mapper VM on that host. In
some embodiments, an aggregate cost can be a measure of
computational and network resources consumed for complet-
ing a particular reducer task on a particular VM, which also is
an indication of the total time taken by that particular reducer
task on the particular VM. By minimizing this aggregate cost,
it is possible to solve for one or more optimal assignments of
reducer VMs to reducer tasks.

In a simplified embodiment, the optimization assumes
there will be one reducer VM per key, and if there are more
keys currently being output by mapper VMs than there are
Mapper VMs, additional VMs can be created. Later in the
present disclosure, a more complicated embodiment is
described where the optimization problem does not have the
assumption of one key per one reducer VM, where the parti-
tioning method can allow for more than one key per reducer
VM.

Referring back to the simplified embodiment where the
partitioning method assumes one key per one reducer VM, the
constraints optimization problem is reduced to finding the
optimal solution of deciding which VM should be used for
performing a particular reducer task for a particular key based
onthe key distribution. Broadly speaking, determining a solu-

20

40

45

50

6

tion to the assignment problem is not trivial. Many factors
besides key distribution can affect the cost of assigning a
particular reducer VM to perform a reducer task for a particu-
lar key.

The costs associated with possible assignments of virtual
machines to reducer tasks can include, for each possible
virtual machine and for each reducer task, a cost for the
particular possible virtual machine to perform the particular
reducer task. Such a cost can be computed based on one or
more of the following:

The amount of data to be transterred between the mapper
VM and the particular reducer VM based on the distri-
bution of keys over the mapper VMs (related to the
amount of time and bandwidth required to transfer the
key-value pairs to the particular reducer VM thus affect-
ing the cost of performing the particular reducer task);

Network distance(s) from the virtual machine(s) on which
the key-value pairs for the particular key is stored to the
particular virtual machine performing the reducer task
for the particular key (related to the amount of time
required to transfer the key-value pairs to the particular
reducer VM thus affecting the cost of performing the
particular reducer task;

Processor utilization of the particular virtual machine (on a
physical host) performing the reducer task for the par-
ticular key (lower utilization generally means lower cost
of performing the particular reducer task using the par-
ticular reducer VM);

Memory utilization of the particular virtual machine per-
forming the reducer task for the particular key (lower
utilization generally means lower cost of performing the
particular reducer task using the particular reducer VM);

Bandwidth availability(-ies) of the communication path
from the virtual machine(s) on which the key-value pairs
for the particular key is stored to the particular virtual
machine performing the reducer task for the particular
key (higher bandwidth generally means lower cost and
better network utilization for transferring the key-value
pairs); and

Disk input/output speeds of the particular virtual machine
performing the reducer task for the particular key
(higher speeds generally mean lower cost and faster
execution of the reducer task).

Defining the Variable Matrix X

In view of all these varied factors, a constraint solver can
effectively solve the problem of reducer VM assignments and
generation. Specifically, the constraint solver can use a vari-
able matrix (in combination with one or more cost matrices)
and solve for one or more optimal solutions subject to one or
more constraints. The mechanics of the constraint solver
searches through the different possible instances of the vari-
able matrix (subject to the one or more constraints) to deter-
mine which one (or more) of the instances would result in the
lowest costs (or lowered costs).

FIG. 4 shows an exemplary variable matrix X, according to
some embodiments of the disclosure. Each entries in the
matrix is denoted by x_ij, where i ranges from 1 to m, and j
ranges from 1 to n. Given n Keys, the improved partitioning
method aims to determine n Reducer VMs that can be
assigned to reduce the n Keys. There are also M (existing)
mapper VMs, which are VMs that are already existing and
placed in certain physical hosts. Hence each of these M map-
per VMs can be represented by one row each in the variable
matrix. However, when M is less than n, p=n—M number of
additional VMs should be created. To accommodate p addi-
tional VMs to be created on physical hosts (where p=n-M),
the variable matrix includes further rows for these additional



US 9,367,344 B2

7

VMs. Depending on q available hosts, the variable matrix can
include up to p*q new rows in the variable matrix (or some
other prescribed number of possible additional VMs to be
created). In other words, the p*q rows indicate the option of
each of these new VMs to potentially have q host options of
where they can be created. The result is a variable matrix with
m number of rows, where m=M+p*q. Phrased differently, the
variable matrix has dimensions of at least n by (M+p*q),
where n is the number of keys, M is the number of mapper
virtual machines, p is n-M, and q is the number of available
physical hosts on which a virtual machine can be created.

Referring back to FIG. 4, each variable x_ij in the variable
matrix is 1 if a reducer for key K_j selects the VM denoted by
the V_i. V_i is either one of the existing Mapper VMs, or a
new VM to be created on one of the q available hosts. For all
V_ithat is a non-mapper new VM to be created, it is possible
to know which host the new VM can be created in, based on
which variable row it is. (In terms of mathematics: for i>M,
(i-M) % q can give the host that V_i corresponds to, where M
is number of Mappers, q is the number of hosts, and % is the
modulo (reminder) operator.)

Advantageously, this variable matrix setup involving mul-
tiple VM rows for existing VMs and all the additional VMs
required allows us to mathematically solve for the best solu-
tion, including giving an opportunity for a physical host to
create more than one VMs.

First Set of Exemplary Constraints

The possible instances of the variable matrix X is limited
by one or more constraints, generally business rules/policies
may govern how many VMs can be created on one host, or
how many reducer tasks a reducer VM can perform. For that
reason, one or more constraints are provided to limit the
possible instances of the variable matrix X.

Referring back to the simplified embodiment, there can be
three constraints: (A1) a virtual machine is assigned to at most
one reducer task; (A2) a reducer task for a particular key is
assigned to only one virtual machine; and (A3) if a reducer
task is assigned to a virtual machine to be created on a physi-
cal host, the virtual machine is created on only one physical
host.

The first constraint (A1) requires that for VM rows (mapper
VMs and non-mapper VMs to be created) in the variable
matrix X, the sum of the x_ij values is less than or equal to 1.
This constraint means there is at most one reducer task for a
particular key per reducer VM. The constraint Al can be
summarized below:

Constraint A1

For all VM rows

add constraint: Sum(x_ij)=<1 for j=[1, n]

The = is used to accommodate the scenarios when there are
lesser keys than the number of mapper VMs (e.g., when n<M,
some mapper VMs may not be used as a reducer VM)

The second constraint (A1) requires that for all VM rows
and all keys, the sum of the column should equal to 1. This
constraint means that a key can be reduced by only one VM at
a time. The constraint A2 can be summarized below:
Constraint A2
For all keys, i.e., all values of j,
add constraint Sum(x_ij)=1 for i=[1, m]

The third constraint (A3) requires that for the additional
VMs to be created, a VM is created in only one host. To
explain this constraint, consider the following example. Sup-
pose there are two additional VMs needed (p=2), there are 2
available hosts (q=2), and there are 2 keys (n=2). The rows
and columns in the variable matrix for these VMs are as
follows:

5

10

15

20

25

30

35

40

45

50

55

60

65

K 1 K 2
V. x1 x2
V_ X3 X4
v_21 X5 X6
V. X7 X8

Here V_11 indicates the first VM on the first Host, V_12
indicates the first VM on the second Host, and so on. So the
first VM can be created in Host 1 or Host 2, and it can be
linked to one Key only. Hence the constraint for Host 1 would
be: x1+x2+x3+x4=1. At any point of time only one value of
the variables: x1, X2, X3, or x4 can be 1, indicating only one
host is chosen for that VM, and only one key is selected for
that VM. Similarly the constraint for the second Host would
be: x5+x6+x7+x8=1. The constraint A3 can be summarized
below for all VM rows corresponding to the same VM and all
possible Hosts:

Constraint A3

For every additional VM (p total) required,

add constraint Sum (x_ij)=1, for all values of i corresponding
to the same VM, for all keys j=[1, n], i.e., all the VM rows in
the variable matrix corresponding to the current VM.

Note that the constraint set A3 only means that a single VM
can be associated to only one host, but it does not mean thata
single host cannot actually create multiple VMs (which is not
a constraint)

While the present disclosure focuses on several simple
constraints (assuming all hosts are capable of creating new
VMs), it is understood by one skilled in the art that in some
situations the computational resource constraints (or rules/
policies) on hosts can limit creating these VMs. In these
situations, further constraints can be made to limit which
hosts can actually create new VMs, and how many VMs can
be created on one host.

Determining the Cost Matrices

The costs associated with a particular reducer VM per-
forming a particular reducer task can be stored in a cost
matrix. Determining the costs associated with the possible
assignments of virtual machines to reducer tasks can include
computing, for each virtual machine and for each reducer
task, a cost for performing the particular reducer task for a
particular key using a particular virtual machine based on the
distribution of keys over the mapper virtual machines. It is
possible to compute more than one cost matrices, and a func-
tion can be provided to compute the aggregate cost based on
(an instance of) the variable matrix X, and the one or more
cost matrices. The following example shows cost matrices
defined based on distribution of keys and network distances
between hosts.

To represent distribution of keys as part of the cost, a key
distribution matrix D can be defined. FIG. 5 shows a key
distribution matrix D, according to some embodiments of the
disclosure. An entry in the matrix D, D_ij, represents the
number of values for Key K_j generated by VM V_i. In this
example, for the non-Mapper VM variables (the additional
VMs to be generated), the corresponding values of keys are
Zeros.

To represent the network distance as part of the cost, a
network distance matrix C can be defined. FIG. 6 shows a
network distance matrix C, according to some embodiments
of'the disclosure. An entry in the network distance matrix C,
C_ab, indicates the network distance between the VMs V_a
and V_b. Here note that C_ii is zero, and C_ab=C_ba.

The aggregate cost can depend on the network distance, the
amount of data to be transferred between the VM which is



US 9,367,344 B2

9

chosen for the reducer task of a particular key, and the other
VMs from which the data for that key is to be transferred. As
an example for Key K_1, if VM V_1 is the chosen VM, then
this contributes the following value to the final sum of aggre-
gate costs:  x_11*[D_21*C_21+4D_31*C_31+
D_il1*C_il+ . . . +Dm1*C_ml]. It is understood that other
formulations can be used, depending on the application. The
sum of aggregate costs thus gives a measure of the cost of
moving all the data for this key from the other VMs to this
actual selected VM for the Reducer task of that key to perform
the reducer task. To minimize the costs over many possible
assignments, the partitioning method adds cost values for all
possible variables to form the final aggregate cost metric to
minimize on:

Function aggregate_cost (Set of all x_ij, Matrix D, Matrix C)
cost =0
for every x_ij in Set of all x_ij for iin [1,m], and j in [1,n]
cost_multiple_sum = 0
for every kin [1,m]
if k is not equal to i
cost_multiple_sum = cost_multiple_sum + D_kj * C_kj
cost = cost + x_ij * cost_multiple_sum
return cost

To summarize, the above example describes the constraints
optimization problem with the cost objective function, and
the constraints, where the variables indicate which key cor-
responds to which VM, and the host selection of the addi-
tional non-Mapper VMs, with the assumption of one key per
reducer VM:

Minimize aggregate_cost(Set of all x_ij, Matrix D, Matrix C)
Subject to constraints Al, A2 and A3.

The above example illustrates the determination of a cost
matrix, which can take can take into account one or more
factors. It is envisioned that other factors can also be used for
determining the costs in the cost matrix. For example, the cost
can depend on how busy the various physical machines run-
ning these VMs are as well as on the network distance and
bandwidth availability between these nodes. In other words,
the existing processor/network loads can impact costs.

In some cases, one or more factors can result in creating a
new VM on an entirely different physical host if that will
reduce the longest reducer completion time. In other words,
the possible assignments of virtual machines to the reducer
tasks comprises assignments of the mapper virtual machines
to reducer tasks and assignments of virtual machines to be
created on available physical hosts to reducer tasks.

A Second Set of Exemplary Constraints

One skilled in the art would appreciate that the constraints
can be modified depending on the application. For instance, in
some embodiments, a reducer task can handle more than one
key, in other words, a virtual machine can be assigned to any
number of reducer tasks (or some other predefined number of
reducer tasks). The corresponding constraints can include
(A2)areducer task for a particular key is assigned to only one
virtual machine; and (A3_new) ifa reducer task is assigned to
a virtual machine to be created on a physical host, the virtual
machine is created on only one physical host. Note that con-
straint A3_new is a modified version of constraint A3 due to
the relaxation of constraints, the mathematics for the con-
straint is to be defined slightly differently.

To accommodate this relaxation in the constraints, it is
possible to provide a second set of exemplary constraints (in
place of the first set, while keeping the same or similar cost
matrices as described above). Since constraint Al from the
first set is no longer applicable, it will not be used. However,

15

20

25

30

35

40

45

50

55

60

65

10

constraint A2 from the first set is still applicable (requiring a
single key is reduced by only one VM at a time). Constraint
A3 from the first set which was used to indicate the host
selection and placement for all the additional non-mapper
VMs, can be adjusted (as constraint A3_new) to take into
consideration that a VM can handle more than one key, but
still with the constraint of one host per VM. Referring back to
the example with two additional VMs, 2 possible hosts to
select from and 2 keys, the variable matrix is:

K 1 K 2
V_11 x1 x2
v_12 X3 X4
v_21 X5 X6
V_22 X7 X8

The constraint A3_new is thus applicable for the first VM
variable rows—V_11, and V_12 (indicating VM in first host
or second host), where:

O=x1+x3=l1

O=x2+x4=1

O=x1+x4=1

0=x2+x3x<1 (for the first VM)

Here in the constraint A3_new, x1+x3 can be at most 1, but
can also be 0, indicating only one host is chosen for the VM if
that particular key is chosen for that VM or not.

Similarly for the second VM, where the constraint A3_new
prescribes:

O=x5+x7=1

0=x6+x8=1

O=x5+x8=1

0=x6+x7 (for the second VM)

Ifthere are a maximum of p potential additional VMs to be
added and there are q host options, and there are n keys, to
generalize, for every additional VM of the p additional VMs
required, a constraint is placed for every combination of two
variables, one from one VM row, and another from any of'the
(q-1) VM variable rows we have for that specific VM. In the
above example, the combinations were:

(x1, x3), (x1, x4), (x2, x3), (x2, x4) for the first VM, and

(x5, x7), (x5, x8), (x6, x7), (x6, x8), for the second VM.

Hence for every combination represented as (a, b), the
constraint can be Osa+b=<l. To summarize, constraint
A3 _new is as follows:

Constraint set A3_new

for each additional VM “V” from the maximum set of p
additional VMs potentially required, for every possible com-
bination (a, b), where “a” represents any one variable in one
VM row, and “b” represents any one variable in any of the
(q-1) remaining VM variable rows for the current VM (one of
possible p),

add constraint O=(a+b)=1

To summarize, the above example describes the constraints
optimization problem with the cost objective function, and
the constraints, where the variables indicate which key cor-
responds to which VM, and the host selection of the addi-
tional non-Mapper VMs, with the assumption of one key per
reducer VM:

Minimize aggregate_cost(Set of all x_ij, Matrix D, Matrix C)
Subject to constraints A2 and A3_new.

System Overview

Cloud infrastructure may support independent resource
placement (i.e., scheduling) decisions internally among the
components such as Nova (compute), Cinder (block storage),
and Neutron (networking) (other exemplary components



US 9,367,344 B2

11

include Swift (Object Storage), Sahara (Elastic MapReduce).
Because of the independent decisions, say made by the Nova-
scheduler and the Cinder-scheduler, there is a good possibil-
ity for the two hosts selected for VM and volume to reside in
different racks and hence consuming a good amount of traffic
bandwidth, leading to a non-optimal resource placement.

Existing scheduling mechanisms support handling simple
constraints. However, there are no guarantees of providing a
globally optimal solution and computing platforms generally
do nothandle complex optimization constraints that could not
only involve state variables local to the service, but also from
the other services, covering all the resources—compute, stor-
age, and network. Tenants can have complex business rules
and policies that govern the data center resources, and the
resource placement decisions (i.e., partitioning in the case of
MapReduce) should consider these requirements. For
example, tenants may expect all the storage to reside locally
where the compute is, or may expect to minimize the network
bandwidth usage. There could be also be cost-related busi-
ness rules on what kinds of instances to schedule depending
on the time (thus affecting cost function definitions). Tenant
policies may also request to minimize the distance. Advanta-
geously, the improved partitioning method can address any
one or more of these tenant specifications while solving for
optimized assignments of VMs to reducer tasks.

FIG. 7 shows an exemplary system for implementing the
improved partitioning method, e.g., determining virtual
machine assignment for reducer tasks on physical hosts,
according to some embodiments of the disclosure. The sys-
tem 700 includes a partitioning system 702. Partitioning sys-
tem 702 includes one or more processors 704 and one or more
memory elements 706. Memory element 706 can store data
and instructions for facilitating any of the partitioning func-
tions therein. Partitioning system 702 further includes costs
module 708 and constraints solver 710, that when executed by
the at least one processors 704 are configured to a constraints
solver that when executed by the at least one processor is
configured to perform any one or more parts of the partition-
ing method (such as the method illustrated by FIG. 2).

System 700 further includes one or more schedulers 712
which cankeep track of the states of the resources and instruct
resources to perform certain tasks. For instance, the scheduler
712 may be configured to implement MapReduce using vari-
ous VMs. In some cases, the scheduler 712 can provide stor-
age management. Examples of schedulers include Neutron,
Cinder, and Nova. In system 700, the costs module 708 inter-
faces with one or more schedulers 712. For instance, the costs
module 708 can be configured to determine a distribution of
keys, and states associated with hosts, virtual machines, net-
work links, network topology, etc. The costs module 708 can
provide a repository for (updated) states of resources in the
virtual cloud infrastructure. Generally speaking, the costs
module 708 can gather information usable for determining
one or more cost matrices.

System 700 also includes a rules/policies part 714 that can
interface with tenant or administrators who may want to
constrain the partitioning method. Costs module 708 can
interface with rules/policies part 714, e.g., if certain rules/
policies may affect cost function definitions. Furthermore,
the constraints solver 710 may interface with rules/policies
part 714 to determine one or more constraints for the con-
straints optimization problem. Using the cost matrices from
costs module 708, and constraints determined from rules/
policies part 714, constraints solver 710 can determine opti-
mized assignments of reducer VMs to reducer tasks. Accord-
ingly, the constraints solver 710 can interface with schedulers
712 to execute those optimized assignments.

10

20

25

30

35

40

45

50

55

60

65

12

The improved partitioning method and system advanta-
geously provide a smart resource placement decision making
engine that is universally applicable for many kinds of
resource placement decisions, and can communicate with all
the services (e.g., such as varied cloud infrastructure compo-
nents usable with OpenStack). The improved partitioning
method and system can solve for minimizing (or maximizing)
certain optimization metrics while satistying a set of con-
straints. The framework lends itself easily to help satisty
tenant APIs that could allow a tenant to specify the resource
request, along with business rules and policies (which can
translate to complex constraints usable by the partitioning
framework).

Trade-Off for Waiting Until Map Tasks are Complete

One aspect of the improved partitioning method involves
providing dynamic assignment/placement of reducers after
the map tasks are done instead of a priori assignment/place-
ment. Requiring that all the map tasks are complete is not a
performance issue. If the number of keys produced by all the
mappers is small, the overall reducer time is small anyway; if
the number of keys produced is large, making the reducer
placement decision after all the map tasks are complete adds
only a small amount to the overall completion time. Note that
even if the reducer tasks are started a priori, they cannot start
execution until all the map tasks are complete. It is also
understood by one skilled in the art that the time for solving
the optimization problem is generally far less than the time an
inefficient partitioning method would have

Variations and Implementations

While the above disclosure describes a matrix having cer-
tain variables in the rows and certain variables in the columns,
it is understood by one skilled in the art that the rows and
columns can be switched for an equivalent implementation.

The embodiments disclosed herein are intended to illus-
trate how a constraints solver can be used to optimize reducer
VM assignments to keys. One skilled in the art would appre-
ciate that other embodiments are envisioned where one or
more assumptions/simplifications can be made to make the
optimization problem less complicated. Furthermore, one
skilled in the art would appreciate that other combination of
constraints can be applied depending on the application while
leveraging the advantages of the present embodiments.

Generally, the improved partitioning method is performed
after the map tasks are complete. However, in some cases, the
improved partitioning method is performed once a distribu-
tion of keys can be estimated (but the map tasks are not
necessarily complete). Furthermore, embodiments generally
assume that that the mapper VMs are already created and the
mapper VMs are able to run the reducer tasks as reducer VMs.
However, it is envisioned that not all the mapper VMs are able
to run the reducer tasks as reducer VMs, especially if some of
the mapper VMs are scheduled to perform other tasks.

If network distance is part of the (aggregate) cost, one
skilled in the art can expect that a measure of network distance
between two virtual machines (i.e., the respective hosts that is
running the two virtual machines) can be determined or esti-
mated from the physical topology of hosts in the cloud infra-
structure.

In some cases, the constraints optimization problem may
require one VM per reducer or mapper, but it is envisioned
that the optimization problem is applicable in situations
where a VM can run multiple reducers or mappers.

To further simplify matters, some embodiments can
assume that the time to complete a reducer task is directly
proportional to the number of (key-value) pairs assigned to it.
However, it is envisioned that some variations of the present



US 9,367,344 B2

13

disclosure can estimate the time to complete a reducer task
differently (e.g., based on further factors).

Within the context of the disclosure, a network used herein
represents a series of points, nodes, or network elements of
interconnected communication paths for receiving and trans-
mitting packets of information that propagate through a com-
munication system. A network offers communicative inter-
face between sources and/or hosts, and may be any local area
network (LAN), wireless local area network (WLAN), met-
ropolitan area network (MAN), Intranet, Extranet, Internet,
WAN, virtual private network (VPN), or any other appropri-
ate architecture or system that facilitates communications in
anetwork environment depending on the network topology. A
network can comprise any number of hardware or software
elements coupled to (and in communication with) each other
through a communications medium. As used herein in this
Specification, the term ‘network element’ is meant to encom-
pass any of the aforementioned elements, as well as partition-
ing systems, servers (physical or virtual), end user devices,
routers, switches, cable boxes, gateways, bridges, loadbal-
ancers, firewalls, inline service nodes, proxies, processors,
modules, or any other suitable device, component, element,
proprietary appliance, or object operable to exchange,
receive, and transmit information in a network environment.
These network elements may include any suitable hardware,
software, components, modules, interfaces, or objects that
facilitate the partitioning operations thereof. This may be
inclusive of appropriate algorithms and communication pro-
tocols that allow for the effective exchange of data or infor-
mation.

In one implementation, partitioning systems described
herein may include software to achieve (or to foster) the
functions discussed herein for determining optimized assign-
ment of reducer VMs to reducer tasks where the software is
executed on one or more processors to carry out the functions.
This could include the implementation of instances of costs
modules, constraints solvers, and/or any other suitable ele-
ment that would foster the activities discussed herein. Addi-
tionally, each of these elements can have an internal structure
(e.g., a processor, a memory element, etc.) to facilitate some
of the operations described herein. In other embodiments,
these functions for partitioning may be executed externally to
these elements, or included in some other network element to
achieve the intended functionality. Alternatively, partitioning
systems may include software (or reciprocating software)
that can coordinate with other network elements in order to
achieve the functions described herein. In still other embodi-
ments, one or several devices may include any suitable algo-
rithms, hardware, software, components, modules, inter-
faces, or objects that facilitate the operations thereof.

In certain example implementations, the partitioning func-
tions outlined herein may be implemented by logic encoded
in one or more non-transitory, tangible media (e.g., embedded
logic provided in an application specific integrated circuit
[ASIC], digital signal processor [DSP] instructions, software
[potentially inclusive of object code and source code] to be
executed by one or more processors, or other similar machine,
etc.). In some of these instances, one or more memory ele-
ments can store data used for the operations described herein.
This includes the memory element being able to store instruc-
tions (e.g., software, code, etc.) that are executed to carry out
the activities described in this Specification. The memory
element is further configured to store databases or data struc-
tures such as variable matrices, cost matrices, states of
resources, constraints, etc., disclosed herein. The processor
can execute any type of instructions associated with the data
to achieve the operations detailed herein in this Specification.

25

30

35

40

45

50

55

60

65

14

In one example, the processor could transform an element or
anarticle (e.g., data) from one state or thing to another state or
thing. In another example, the activities outlined herein may
be implemented with fixed logic or programmable logic (e.g.,
software/computer instructions executed by the processor)
and the elements identified herein could be some type of a
programmable processor, programmable digital logic (e.g., a
field programmable gate array [FPGA], an erasable program-
mable read only memory (EPROM), an electrically erasable
programmable ROM (EEPROM)) or an ASIC that includes
digital logic, software, code, electronic instructions, or any
suitable combination thereof.

Any of these elements (e.g., the network elements, parti-
tioning systems, etc.) can include memory elements for stor-
ing information to be used in achieving improved partitioning
method, as outlined herein. Additionally, each of these
devices may include a processor that can execute software or
an algorithm to perform the improved partitioning method as
discussed in this Specification. These devices may further
keep information in any suitable memory element [random
access memory (RAM), ROM, EPROM, EEPROM, ASIC,
etc.], software, hardware, or in any other suitable component,
device, element, or object where appropriate and based on
particular needs. Any of the memory items discussed herein
should be construed as being encompassed within the broad
term ‘memory element.” Similarly, any of the potential pro-
cessing elements, modules, and machines described in this
Specification should be construed as being encompassed
within the broad term ‘processor.” Each of the network ele-
ments can also include suitable interfaces for receiving, trans-
mitting, and/or otherwise communicating data or information
in a network environment.

Additionally, it should be noted that with the examples
provided above, interaction may be described in terms of two,
three, or four parts. However, this has been done for purposes
of clarity and example only. In certain cases, it may be easier
to describe one or more of the functionalities of a given set of
flows by only referencing a limited number of network ele-
ments. It should be appreciated that the systems described
herein are readily scalable and, further, can accommodate a
large number of components, as well as more complicated/
sophisticated arrangements and configurations. Accordingly,
the examples provided should not limit the scope or inhibit
the broad techniques of partitioning, as potentially applied to
a myriad of other architectures.

It is also important to note that the steps in the FIG. 2
illustrate only some of the possible scenarios that may be
executed by, or within, the partitioning systems described
herein. Some of these steps may be deleted or removed where
appropriate, or these steps may be modified or changed con-
siderably without departing from the scope of the present
disclosure. In addition, a number of these operations have
been described as being executed concurrently with, or in
parallel to, one or more additional operations. However, the
timing of these operations may be altered considerably. The
preceding operational flows have been offered for purposes of
example and discussion. Substantial flexibility is provided by
partitioning systems in that any suitable arrangements, chro-
nologies, configurations, and timing mechanisms may be pro-
vided without departing from the teachings of the present
disclosure.

Numerous other changes, substitutions, variations, alter-
ations, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encompass
all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended
claims. In order to assist the United States Patent and Trade-



US 9,367,344 B2

15

mark Office (USPTO) and, additionally, any readers of any
patent issued on this application in interpreting the claims
appended hereto, Applicant wishes to note that the Applicant:
(a) does not intend any of the appended claims to invoke
paragraph six (6) of 35 U.S.C. section 112 as it exists on the
date of the filing hereof unless the words “means for” or “step
for” are specifically used in the particular claims; and (b) does
not intend, by any statement in the specification, to limit this
disclosure in any way that is not otherwise reflected in the
appended claims.

What is claimed is:

1. A method for determining and executing optimal virtual
machine assignments for reducer tasks on physical hosts, the
method comprising:

determining a distribution of keys over mapper virtual

machines after map tasks are complete, wherein the
distribution of keys comprises, for each key and for each
mapper virtual machine, a number of key-value pairs for
the particular key stored with the particular mapper vir-
tual machine;

determining costs associated with assignments of virtual

machines to reducer tasks on the keys based on the
distribution of keys;

defining a variable matrix for assigning virtual machines to

reducer tasks, wherein the variable matrix comprises
values indicating whether a virtual machine is to be
assigned to reduce one or more keys, and the variable
matrix has dimensions of at least n by (M+p*q), where n
is the number ofkeys, M is the number of mapper virtual
machines, p is n-M, and q is the number of available
physical hosts on which a virtual machine can be cre-
ated;

determining the optimal virtual machine assignments for

the reducer tasks, using a constraints solver, based on the
variable matrix and the costs, subject to one or more
constraints on the variable matrix; and

assigning, according to the optimal virtual machine assign-

ments, the reducer tasks for execution by the virtual
machines on the physical hosts.

2. The method of claim 1, wherein the assignments of
virtual machines to the reducer tasks comprises assignments
of the mapper virtual machines to reducer tasks and assign-
ments of virtual machines to be created on available physical
hosts to reducer tasks.

3. The method of claim 1, wherein the optimal assignments
comprises assignments of virtual machines to be created on
available physical hosts to reducer tasks.

4. The method of claim 3 further comprises creating the
virtual machines on available physical hosts according to the
optimal assignments.

5. The method of claim 1, wherein the costs associated with
assignments of virtual machines to reducer tasks comprises,
for each virtual machine and for each reducer task, a cost for
the particular virtual machine to perform the particular
reducer task.

6. The method of claim 1, wherein determining the costs
associated with the assignments of virtual machines to
reducer tasks comprises computing, for each virtual machine
and for each reducer task, a cost for performing a particular
reducer task for a particular key using a particular virtual
machine based on the distribution of keys over the mapper
virtual machines.

7. The method of claim 6, wherein the cost for performing
the particular reducer task for the particular key is computed
based at least on network distance(s) from the virtual
machine(s) on which the key-value pairs for the particular key

10

15

20

25

30

35

40

45

50

55

60

65

16

is stored to the particular virtual machine performing the
reducer task for the particular key.

8. The method of claim 6, wherein the cost for performing
the particular reducer task for the particular key is computed
based at least on processor utilization of the particular virtual
machine performing the reducer task for the particular key.

9. The method of claim 6, wherein the cost for performing
the particular reducer task for the particular key is computed
based at least on memory utilization of the particular virtual
machine performing the reducer task for the particular key.

10. The method of claim 6, wherein the cost for performing
the particular reducer task for the particular key is computed
based at least on bandwidth availability(-ies) of the commu-
nication path from the virtual machine(s) on which the key-
value pairs for the particular key is stored to the particular
virtual machine performing the reducer task for the particular
key.

11. The method of claim 6, wherein the cost for performing
the particular reducer task for the particular key is computed
based at least on disk input/output speeds of the particular
virtual machine performing the reducer task for the particular
key.

12. The method of claim 1, wherein the one or more con-
straints comprises one or more of the following:

(1) a virtual machine is assigned to at most one reducer

task;

(2) areducer task for a particular key is assigned to only one

virtual machine; and

(3) if a reducer task is assigned to a virtual machine to be

created on a physical host, the virtual machine is created
on only one physical host.

13. The method of claim 1, wherein the one or more con-
straints comprises one or more of the following, if a virtual
machine is capable of performing up to a predefined number
of reducer task(s):

(1) areducer task for a particular key is assigned to only one

virtual machine; and

(2) if a reducer task is assigned to a virtual machine to be

created on a physical host, the virtual machine is created
on only one physical host.

14. A system for determining and executing optimal virtual
machine assignments for reducer tasks on physical hosts
comprising:

at least one memory element;

at least one processor coupled to the at least one memory

element;

a costs module that when executed by the at least one

processor is configured to:

determine a distribution of keys over mapper virtual

machines after map tasks are complete, wherein the
distribution of keys comprises, for each key and for each
mapper virtual machine, a number of key-value pairs for
the particular key stored with the particular mapper vir-
tual machine; and

determine costs associated with assignments of virtual

machines to reducer tasks on the keys based on the
distribution of keys;

defining a variable matrix for assigning virtual machines to

reducer tasks, wherein the variable matrix comprises
values indicating whether a virtual machine is to be
assigned to reduce one or more keys, and the variable
matrix has dimensions of at least n by (M+p*q), where n
is the number ofkeys, M is the number of mapper virtual
machines, p is n-M, and q is the number of available
physical hosts on which a virtual machine can be cre-
ated; and



US 9,367,344 B2

17

a constraints solver that when executed by the at least one

processor is configured to:

determine the optimal virtual machine assignments for the

reducer tasks based on the variable matrix and the costs,
subject to one or more constraints on the variable matrix;
and

providing the optimal virtual machine assignments for the

reducer tasks to a scheduler to execute the optimal vir-
tual machine assignments on the physical hosts.

15. The system of claim 14, wherein the assignments of
virtual machines to the reducer tasks comprises assignments
of the mapper virtual machines to reducer tasks and assign-
ments of virtual machines to be created on available physical
hosts to reducer tasks.

16. A computer-readable non-transitory medium compris-
ing one or more instructions, for determining and executing
optimal virtual machine assignments for reducer tasks on
physical hosts, that when executed on a processor configure
the processor to perform one or more operations comprising:

determining a distribution of keys over mapper virtual

machines after map tasks are complete, wherein the
distribution of keys comprises, for each key and for each
mapper virtual machine, a number of key-value pairs for
the particular key stored with the particular mapper vir-
tual machine;

determining costs associated with assignments of virtual

machines to reducer tasks on the keys based on the
distribution of keys;

defining a variable matrix for assigning virtual machines to

reducer tasks, wherein the variable matrix comprises
values indicating whether a virtual machine is to be
assigned to reduce one or more keys, and the variable
matrix has dimensions of at least n by (M+p*q), where n
is the number ofkeys, M is the number of mapper virtual
machines, p is n-M, and q is the number of available
physical hosts on which a virtual machine can be cre-
ated;

determining the optimal virtual machine assignments for

the reducer tasks, using a constraints solver, based on the

10

15

25

30

35

18

variable matrix and the costs, subject to one or more
constraints on the variable matrix; and

assigning, according to the optimal virtual machine assign-

ments, the reducer tasks for execution by the virtual
machines on the physical hosts.

17. The computer-readable non-transitory medium of
claim 16, wherein:

the optimal assignments comprises assignments of virtual

machines to be created on available physical hosts to
reducer tasks; and

the one or more operations further comprise creating the

virtual machines on available physical hosts according
to the optimal assignments.

18. The computer-readable non-transitory medium of
claim 16, wherein determining the costs associated with the
assignments of virtual machines to reducer tasks comprises
computing, for each virtual machine and for each reducer
task, a cost for performing a particular reducer task for a
particular key using a particular virtual machine based on the
distribution of keys over the mapper virtual machines.

19. The computer-readable non-transitory medium of
claim 16, wherein the one or more constraints comprises one
or more of the following:

(1) a virtual machine is assigned to at most one reducer

task;

(2) areducer task for a particular key is assigned to only one

virtual machine; and

(3) if a reducer task is assigned to a virtual machine to be

created on a physical host, the virtual machine is created
on only one physical host.

20. The computer-readable non-transitory medium of
claim 16, wherein the one or more constraints comprises one
or more of the following, if a virtual machine is capable of
performing up to a predefined number of reducer task (s):

(1) areducer task for a particular key is assigned to only one

virtual machine; and

(2) if a reducer task is assigned to a virtual machine to be

created on a physical host, the virtual machine is created
on only one physical host.

#* #* #* #* #*



